مروری بر تاثیر حضور نانو ذرات در محلول های آمینی در جذب گاز دی اکسیدکربن

تاریخ دریافت مقاله: تیر ۱۳۹۹ تاریخ پذیرش مقاله: مرداد ۱۳۹۹

حسن پاشایی'، احد قائمی^۲

ٔ محقق پسا دکترا، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران ^۲دانشیار، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران

> **نام نویسنده مسئول:** احد قائمی

> > چکیدہ

در این تحقیق، اثر نانو اکسیدهای فلزی مانند NiO ،Fe₃O₄، 20₀ و TiO₂ و SiO به همراه سیال پایه، بر روی جذب گاز کربن دی اکسید در ستون حبابی بررسی شده است. بررسی ها نشان داد که افزودن نانو ذرات به محلول پایه در ابتدا باعث بهبود خصوصیات انتقال جرم در فرآیند جذب CO₂ گردیده و سپس اثر عکس داشته است. همچنین، بررسی ها نشان داد که با افزایش غلظت نانو ذرات در سیال پایه در غلظت های کمتر از غلظت بهینه، میزان جذب گاز نسبت به سیال پایه افزایش می یابد. اما با افزودن نانو ذرات به بیش از غلظت بهینه، میزان جذب کاهش یافته است. همچنین افزودن نانو ذرات به محلول های پایه متفاوت نشان می دهد که نانو ذرات در محلول های مختلف، اثر متفاوت داشته و به یک اندازه میزان جذب CO₂ را بهبود نمی دهند. بررسی های این تحقیق نشان می دهد که حرکت براونی و اثر گریزینگ یا شاتل از مهم ترین عوامل افزایش انتقال جرم در نانو سیالات می باشند که این افزایش، بهبود بیان مبانی، اصول و معادلات حاکم بر برجهای حباب در زمینه حذب گاز کربن دی اکسید، بهبوط نانو محلول های آمین، زمینه لازم برای استاده بهینه از این تجهیزات فرا است تا با توسط نانو محلول های آمین، زمینه لازم برای استفاده بهینه از این تجهیزات فرای است تا با توسط نانو محلول های آمین، زمینه لازم برای استفاده بهینه از این تجهیزات فراهم آید.

مقدمه

یکی از بزرگترین مسائل زیست محیطی جهان امروز، افزایش بیش از حد آثار گازهای گلخانه ای است [۱-۳]. در این بین گاز کربن دی اکسید به دلیل بالاترین زمان ماند و بیشترین مقدار در اتمسفر از مهمترین گازهای گلخانه ای است [۴-۶] که کاهش آن از نظر زیست محیطی اهمیت بسیار زیادی دارد [۷]. حذف گازهای اسیدی مانند کربن دی اکسید و سولفورو اسید به منظور جلوگیری از خوردگی تجهیزات بسیار مهم می باشد [8]. مهمترین منابع تولید گاز کربن دی اکسید، صنایع پتروشیمی و پالایش [۹] ، احتراق زغال سنگ، نیروگاه ها و تولید انرژی از گاز طبیعی می باشد . با توجه به حجم فعالیت های صنعتی نفت و گاز و پتروشیمی در ایران، کشور ما نیز از این قاعده مستثنی نیست. به طوری که براساس فهرست 'CDIAC که در سال ۲۰۰۸ برای سازمان ملل متحد جمع آوری ایران با تولید ۱/۶۹٪ از CO₂ جهان در رتبه دهم قرار دارد. بنابراین بررسی و به کارگیری روش های مرسوم و روش های جدید برای جداسازی کربن دي اكسيد، امري اجتناب ناپذير است. از جمله روش هايي كه براي حذف اين آلاينده استفاده مي شود فرآيند جذب مي باشد [١١, ١٠]. فرآیندهای جذب در مایع به دو دسته فیزیکی و شیمیایی تقسیم می شوند [۱۳, ۱۳]. در روش جذب فیزیکی هیچ گونه واکنشی اتفاق نمی افتد [۱۴] و ناخالصی های جریان گاز از طریق ایجاد نیروهای بین مولکولی در فاز مایع حل می شوند [۱۵, ۱۶]. در این روش از حلال های فیزیکی مانند دی متیل اتر، پلی اتیلن گلیکول، متانول، رکتیسول و سلکسوس استفاده می شود [۱۷]. مزیت اصلی استفاده از حلال های فیزیکی این است که محدودیتی در جذب گاز ندارند [۱۸]. مقدار گاز جذب شده توسط حلال فیزیکی به تعادل مایع – بخار حلال وابسته است که آن نیز با تغییر دما و فشار کنترل می شود. در فشارهای بالای جزء گازی (بیش از ۵۲۵ کیلو پاسکال) حل شونده، ظرفیت جذب گاز توسط حلال های فیزیکی بیشتر از حلال های شیمیایی است. بنابراین فرآیند جذب فیزیکی برای تصفیه گازهای غنی از جزء حل شونده انتخاب بسیار مناسبی است [۱۹, ۲۰]. جذب شیمیایی در غلظت های پایین تا متوسط به جذب فیزیکی ترجیح داده می شوند [۲۱]. برای فرآیند جذب شیمیایی در فاز مایع از محلول های آلکانول آمین مانند منو اتانول آمین (MEA)، دی اتانول آمین (DEA)، ترى اتانول آمين (TEA)، n- متيل دى اتانول آمين، دى گليكول آمين و كربنات پتاسيم داغ به عنوان جاذب استفاده مي شود [۲۲, ۲۲]. این مواد به دلیل ارزان بودن و نیز خاصیت واکنش جذب، به طور گسترده در حذف گازهای اسیدی مورد استفاده قرار می گیرند [8]. عیب این فرآیند تشکیل نمک هایی با پایداری حرارتی (HSS)^۲ با آمین، باعث غیر فعال کردن و محدود کردن توانایی آمین ها شده و از احیای مجدد آن ها جلوگیری می نماید. همچنین مزاحمت های آنیونی مانند کلرید، نیترات و غیره و محصولات جانبی سبب افزایش خوردگی می گردد. به منظور کاهش این مشکل در حین جداسازی، میزان HSS باید به حداقل مقدار خود رسیده و از میزان ۱۰٪ غلظت کل آمین تجاوز ننماید. به طور کلی جذب شیمیایی برای جریان های گازی با فشار پایین که غلظت جز حل شونده گاز در آن ۳- ۲۵ درصد است، مناسب می باشد. اما اگر غلظت جز حل شونده گاز از این میزان بیشتر شود، هزینه بازیابی حلال افزایش می یابد. نانو سیالات مایعاتی هستند که در آن نانو ذرات با قطر کمتر از ۱۰۰ نانومتر، به صورت پایدار در سیال پایه معلق هستند. این سیالات می توانند مشکلاتی از قبیل رسوب، چسبندگی و خوردگی، که در مخلوط های جامد/مایع میلی متری و میکرومتری به طور مرسوم اتفاق می افتد، را حل کنند. اما عملکرد حرارتی سیال پایه را به طور قابل ملاحظه ای افزایش می دهند. امروزه با توجه به گسترش روز افزون فناوری نانو، نانو سیالات به عنوان سیالاتی با پتانسیل و ضرایب انتقال جرم بالا به منظور افزایش جذب کربن دی اکسید در مایعات مطرح می شوند. تحقیقات انجام شده توسط محققین در این زمینه بیانگر آن است که نانو سیال ها با بهبود ضریب انتقال جرم، فرآیند جذب گاز را بهبود می بخشند. اصطلاح نانو سیال نخستین بار توسط چوی^۳ ابداع شد [۲۴]. وی گزارش داد که با افزودن مقدار کمی نانو ذره به سیال پایه، هدایت حرارتی به بیش از ۴۰٪ می رسد. بررسی مطالعات نشان می دهد که وجود ذرات نانو در محلول های شیمیائی باعث تغییر در شدت جذب گاز دی اکسیدکربن می شود. در این تحقیق علاوه بر ارائه یک مطالعه جامع بر جذب گاز دی اکسیدکربن توسط نانو سیال ها، اثر شرایط عملیاتی بر شدت انتقال جرم دی اکسیدکربن، نوع و مقدار نانو ذرات، نوع محلول و غلظت آن و حلالیت گاز مورد بررسی قرار

۱- اثر نانو ذرات بر حلالیت

گرفته است.

با وجود مطالعات قبلی در مورد بررسی میزان جذب در نانوسیال ها، در مورد اثر نانو ذرات بر قابلیت انحلال گاز در نانو سیالات تحقیقات اندکی انجام شده است. چوی، کبلین اسکی⁴ و همکاران [۲۵] مکانیسم بالقوه ای مانند حرکت براونی، لایه بندی مایعات⁴ و خوشه بندی نانو ذره را برای افزایش هدایت حرارتی سازماندهی کردند. آنها اثر نانو ذرات در جذب آمونیاک در ستون حبابی را مورد مطالعه قرار داده و از ۲- اتیل- ۱- هگزانول و n- اکتانول و ۲- اکتانول به عنوان فعال سطحی استفاده نمودند و نشان دادند که افزودن نانو ذرات و فعال سطحی به طور همزمان، عملکرد جذب را ۵/۳۲ برابر افزایش می دهد. ما و همکاران [۷] نرخ انتقال جرم و حرارت نانو لوله های کربنی را

¹ Carbon Dioxide Information Analysis Center

² Heat Stable Salts

³ Choi et al.

⁴ Keblinski et al.

⁵ Liquid layering

با استفاده از نانو سیالات در ستون حبابی بررسی کردند. بر اساس نتایج تحقیقات آنها، با افزایش غلظت نانو ذرات سیلیکا در آب، میزان جذب گاز کربن دی اکسید افزایش یافته است. جذب گاز کربن دی اکسید در ستون حبابی با استفاده از نانو سیال آب/ سیلیکا توسط کیم و همكاران [26] بررسی شده است. با اضافه كردن نانوذرات سیلیكا به مایع پایه، در دقایق اولیه، نرخ جذب و مقدار كل گاز جذب شده به ترتیب ۷۶ و ۲۴ درصد افزایش نشان داده است. آنها نشان دادند که ضریب انتقال جرم CO₂ در نانو سیال ۵ برابر بیشتر از آب است. پینیدا 3 و همکاران [۲۷] اثر نانو ذرات $Al_{2}O_{3}$ و SiO_{2} در جذب CO_{2} در یک برج سینی دار با محلول پایه متانول را مورد ارزیابی قرار دادند. نتایج تحقیقات آنها نشان داد که افزودن نانو ذرات Al₂O₃ و SiO₂ میزان جذب را به ترتیب ۹/۴ و ۷/۹ درصد افزایش می دهد. آنها متوجه شدند که غلظت بهینه نانو ذرات برای هر دو نانو ذره، ۰/۰۵٪ حجمی است. نیو^۷ و همکاران [۲۸] در مورد اثر میدان مغناطیسی در جذب آب و آمونیاک در یک دیوار مرطوب مطالعاتی انجام داده اند. آنها میدان مغناطیسی را در جهت فیلم ریزان و مخالف فیلم ریزان اعمال کردند. نتایج تحقیقات آنها نشان داد که میدان مغناطیسی هم جهت با فیلم ریزان، میزان انتقال جرم را افزایش و میدان مغناطیسی مخالف جهت فيلم ريزان، نرخ انتقال جرم را كاهش مي دهد. وو[^] و همكاران [٢٩] اثر نانو ذرات Fe₃O₄ بر عملكرد جذب آمونياك/ آب تحت میدان مغناطیسی خارجی را بررسی نمودند. آنها دریافتند که ترکیب نانو سیال مغناطیسی و میدان مغناطیسی خارجی عملکرد جذب آمونیاک/ آب را افزایش می دهد. در این تحقیق، نانو سیال آب / Fe₃O4 با غلظت ۰- ۰/۲٪ تحت میدان مغناطیسی ۰- ۰/۲۸ تسلا استفاده شده است. نتايج نشان داده كه ميزان جذب با افزايش غلظت نانو سيال و شدت ميدان مغناطيسي افزايش مي يابد. سليمي و همکاران [۳۰] اثر استفاده از نانو سیالات در فرآیند جذب گاز در بر ج آکنده در حضور میدان مغناطیسی برای جذب CO₂ را مورد بررسی قرار داده و دریافتند که اضافه کردن نانو ذرات به محلول پایه باعث افزایش ضریب انتقال جرم و در نتیجه افزایش میزان انتقال جرم می شود. آنها غلظت بهینه آب/ Fe₃O₄ و آب/ NiO را به ترتیب ۰/۰۰۵ و ۰/۰۱ درصد و حداکثر میزان انتقال جرم در مقایسه با آب را به ترتیب ۱۲ و ۹/۵ درصد به دست آوردند. همچنین در غلظت های بهینه با اعمال میدان مغناطیسی میزان انتقال جرم به ترتیب ۱۴ و ۱۰/۵ درصد بدست آمد. حق طلب و همکاران [۳۱] اثر نانو اکسیدهای روی و سیلسیوم را در جذب CO₂ در یک راکتور همزده مورد آزمایش قرار دادند. اندازه گیری حلالیت CO₂ در آب خالص و ۰/۰۱ ٪ وزنی از نانو ذرات نشان داد که، افزودن نانو ذرات باعث افزایش میزان جذب شده و تاثیر نانو ذرات اکسید روی بیشتر از سیلسیوم می باشد. لی و همکاران [۳۲] نرخ انتقال حرارت و جرم در فرآیند جذب محلول آب/ آمونیاک را با استفاده از نانو ذرات Al₂O₃ و نانو لوله های کربنی در ستون های حبابی بررسی نمودند. علاوه بر این، آماریس^{*} و همکاران [۳۳] از نانو لوله های کربنی برای بررسی عملکرد LiNO₃/NH₃ در ستون حبابی استفاده نمودند. نتایج تحقیقات آنها نشان داد، وجود نانو لوله های کربن باعث افزایش قابل توجهی در نرخ انتقال جرم و گرما می شود. لی و کانگ (۳۴] مطالعه ای را در مورد اثر نانو ذرات Al₂O₃ در پایداری CO₂ در محلول آبی NaCl در یک ستون حبابی انجام دادند. نتایج بررسی های آنها نشان داد که حلالیت با حضور نانو ذرات Al₂O₃ در سه دمای مختلف افزایش می یابد. آنها همچنین غلظت بهینه نانو ذرات برای افزایش حلالیتCO₂ در نانو سیال را ۰/۰۱٪ حجمی به دست آوردند. این مطالعات نشان داد که با افزودن مقدار کمی از نانو ذرات، ظرفیت جذب به طور قابل ملاحظه ای افزایش می یابد. از آنجائیکه آزمایشات قبلی در جاذب ستون حبابی انجام گرفته اند، بنابراین حرکت پراکنده نانو ذرات یک عامل موثر در فاکتور تاثیر گذار در اختلاط حباب های گاز در سیال شده و باعث شکستن حباب های گاز به اندازه های کوچکتر می شود. که باعث افزایش شدت جذب در مقایسه با سیال پایه می گردد [۲۴, ۳۵, ۳۶].

۲- فاكتور بهبود

فاکتور بهبود به عنوان نسبت ضریب انتقال جرم نانو سیالات به محلول خالص برای ارزیابی بهبود ضریب انتقال جرم تعریف می شود [۳۷]. با اندازه گیری زمان جذب و جرم جذب شده، به راحتی می توان میزان جذب را از رابطه زیر به دست آورد [۳۸]:

$$m_{abs}^{o} = \frac{m_{Co_2 - final} - m_{Co_2 - initial}}{t_{abs}} \tag{1}$$

در رابطه بالا m_{abs}^{o} نرخ جذب گاز کربن دی اکسید در محلول، $m_{Co_2-initia}$ جرم اولیه، m_{abs}^{o} جرم نهایی و t_{abs}^{o} زمان جذب را نشان می دهد. زمانی که نانو ذرات به محلول اضافه می شوند، ممکن است میزان جذب محلول تغییر کند. به منظور تعیین اثر نانو ذرات در میزان جذب از رابطه زیر استفاده می شود [۳۹]:

$$E = \frac{n_{Co_2-nanofluid}}{n_{Co_2-basefluid}} \qquad E = \frac{m_{abs,mixed-fluide}^o}{m_{abs,base-fluide}^o}$$
(7)

⁶ Pineda et al.

⁷ Niu et al.

⁸ Wu et al.

⁹ Amaris et al.

¹⁰ Li and Kang

در رابطه (۲)، E فاکتور بهبود می باشد که تاثیر نانو ذرات بر میزان جذب CO₂ را نشان می دهد. اگر E بزرگتر از یک باشد، به معنی این است که افزودن نانو ذرات باعث افزایش میزان جذب شده است. اگر E کوچکتر از یک باشد، افزودن نانو ذرات باعث کاهش عملکرد جذب شده است.

۳- اثر مقدار نانو ذرات در میزان جذب

جریان حامل جاذب با توجه به حرکت براونی و افزایش میزان جذب به دلیل جریان اختلاطی جاذب و CO2، از اثرات اصلی مقدار نانو ذرات در جذب می باشد. به منظور بررسی اثر نانو ذرات بر میزان جذب، از معادله ۲ برای هر یک از نانو ذرات استفاده می شود. کیم و همکاران [۴۰] مطالعه ای بر روی اثر نانو ذرات مس، اکسید مس و آلومینای ۵۰ نانومتری بر سرعت جذب آمونیاک در آب توسط ستون حبابی انجام داده اند. آنها به این نتیجه رسیدند که با افزایش مقدار نانو ذرات، میزان جذب افزایش می یابد. مطالعه ی جذب 2CO با سرعت جذب آمونیاک در آب توسط ستون حبابی انجام داده اند. آنها به این نتیجه رسیدند که با افزایش مقدار نانو ذرات، میزان جذب افزایش می یابد. مطالعه ی جذب 2CO با مستفاده از نانو سیال متانول/ Al2O و متانول/ SiQ در ستون حبابی توسط لی و همکاران [۴۱] انجام شده است. مطالعه آنها نشان داد که وقتی، ۱.٪ اکسید آلومینیوم و اکسید سیلیس استفاده شود، حداکثر جذب 2CO در مقایسه با متانول خالص به ترتیب ۸/۶ و ۶/۵ ٪ استفاده از زایش می یابد. جانگ¹¹ و همکاران [۳۵] میزان جذب کربن دی اکسید در نانو سیال حاوی نانو خرات آلومینا با حلال پایه متانول را در که با فزایش میزان جذب کربن دی اکسید در نانو سیال حاوی نانو خرات آلومینا با حلال پایه متانول را در انوریش می میابد. جانگ¹¹ و همکاران [۳۵] میزان جذب کربن دی اکسید در نانو سیال حاوی نانو ذرات آلومینا با حلال پایه متانول را در است. پنگ⁷¹ و همکاران [۴۲] از نانو ذرات نقره برای افزایش سرعت انتقال جرم آب/ آمونیاک در فرآیش ان داد. کیم و همکاران استان داد. کیم و همکاران است. پنگ⁷¹ و همکاران [۴۲] از نانو ذرات نقره برای افزایش سرعت انتقال جرم آب/ آمونیاک در فرآیش انشان داد. کیم و همکاران است. پنگ⁷¹ و همکاران [۴۲] از نانو ذرات نقره برای افزایش سرعت انتقال جرم آب/ آمونیاک در فرآیش داند. کیم و همکاران استون درای در دانو سیال دادند که میزان جذب در مقایسه با متانول خالص با بعلی درصد افزایش داد. که میزان جذب در مقایسه با آب پایه، ۵۵٪ افزایش داد. که و همکاران است. پنگ⁷¹ و همکاران [۴۲] از نانو ذرات نقره، میزان جذب در مقایسه با آب پایه، ۵۵٪ افزایش داد. کیم و همکاران است. پنگ⁷¹ و همکاران [۴۲] از باز ذرات باعث در می نین با می نور در فرای با بای داد. که با باینفاده داد. ۲۰۰۰ مرم می آب پایه، ۵۵٪ افزایش داد. که میز می مر می با می می داد

در سال های اخیر، محققان علاقه زیادی به استفاده از نانو ذرات اکسید نشان داده اند، زیرا این ماده دارای مواد شیمیای آنتی باکتریال [۴۴]، نیمه هادی، فعالیت فتوکاتالیستی [۴۵] و خواص نوری [۴۶] مناسبی هستند. به عنوان مثال، در فرآیند شیمیایی تولید متانول از گاز سنتز (H2 و CO)، اکسید روی به عنوان یک کاتالیزور استفاده می شود [۴۷]، که از عوامل موثر و لازم در تبدیل گاز سنتز به متانول می باشد. علاوه بر این، جذب CO2 در پودر اکسید روی به روش های مختلف مورد مطالعه قرار گرفته است [۴۸]. اخیرا برهمکنش CO2 با پورد نانو ذرات اکسید روی توسط طیف سنجی مادون قرمز مورد بررسی قرار گرفته است [۴۹]. شکل های ۱ و ۲، نمودار غلظت محلول بر حسب فاکتور بهبود در مقادیر نانو ذرات را نشان می دهند. این نتایج نشان می دهد که با افزایش مقدار نانو ذرات، نرخ جذب می تواند افزایش و یا کاهش بیابد. به طوری که با افزایش مقدار نانو ذرات تا مقدار ماکزیمم، فاکتور بهبود نیز افزایش یافته و بعد از آن کاهش می افزایش و یا کاهش بیابد. به طوری که با افزایش مقدار نانو ذرات تا مقدار ماکزیمم، فاکتور بهبود نیز افزایش یافته و بعد از آن کاهش می بر حسب فاکتور بهبود در مقادیر نانو ذرات برای افزایش مقدار نانو ذرات تا مقدار ماکزیمم، فاکتور بهبود نیز افزایش یافته و بعد از آن کاهش می افزایش و یا کاهش بیابد. به طوری که با افزایش مقدار نانو ذرات تا مقدار ماکزیمم، فاکتور بهبود نیز افزایش یافته و بعد از آن کاهش می یابد. یعنی، یک مقدار بهینه از نانو ذرات برای افزایش میزان جذب CO2 وجود دارد [۰۵]. نتایج نشان می دهد برای نانو ذرات با توانایی جذب CO2 کمتر، با افزایش مقدار جامد مقدار نانو ذرات افزایش یافته و با توجه به اثر اختلاط مرزها، انتقال جرم افزایش می یابد. علاوه بر بر این، نانو ذرات اطراف حباب ها، از انعقاد حباب ها که منجر به تقویت ناحیه انتقال جرم گاز – مایع می می هند. اما زمانی که مقدار جامد بیش از حد زیاد باشد، چون ناحیه سطح تماس گاز – مایع می شود باعث کاهش انتقال جرم می شود (۲۳, ۱ که مقدار جامد بیش از حد زیاد باشد، چون ناحیه سطح تماس گاز – مایع محدود می شود باعث کاهش انتقال جرم می شود (۲۳, ۱

مقدار جامد (kg/m3)

 SiO_2 شکل ۲- فاکتور بهبود جذب CO_2 در غلظت های مختلف نانو ذرات

نتایج در شکل های ۱ و۲ نشان می دهند که با افزایش میزان نانوذرات مقدار جذب افزایش یافته است. همچنین این نمودارها نشان می دهند که، حباب ها در جاذب بیشتر و ببیشتر شده و سبب افزایش شدت توزیع نانو ذرات و افزایش سرعت حرکت و فراوانی نانوذرات در سطح تماس گاز/ مایع می شوند. از آنجائیکه همه این عوامل اثر جذب را بهبود می بخشند، بنابراین باعث افزایش نرخ جذب می شوند [37]. علاوه بر مطالعات اشاره شده در بالا، جدول ۱ انواع موارد مورد بررسی توسط محققین داخلی و خارجی را نشان می دهد. در زمینه دفع گاز کربن دی اکسید توسط آمین ها مطالعات انجام شده بسیارکمتر از جذب است. از میان کارهای محدودی که در این رابطه انجام گرفته است می توان به موارد زیر اشاره کرد: کریت چفیلد [46] در سال ۱۹۸۸، بوش و همکارش [۵۵] در سال ۱۹۹۰ و زو و همکارانش [۶۵] در سال ۱۹۹۵ احیا کربن دی اکسید از محلول های آمینی را در ظروف همزن دار یا برج آکنده بررسی کرده اند. در سال ۱۹۹۷ رناود و همکارانش [۵۷] دفع کربن دی اکسید از محلول های آمینی را در ظروف همزن دار یا برج آکنده بررسی کرده اند. در سال ۱۹۹۷ ماراود و همکارانش و ۲۸۵

			,		-	-
منابع	دستگاه	فرضيات	مدل	پارامتر مورد بررسی	شرايط جذب	جاذب – محلول
[68]	راکتور همزن دار- کربن دی اکسید	-	- ضريب نفوذ	- میزان جذب، غلظت نانو ذرات	شیمیایی	متیل دی اتانول آمین، پیپرازین- نانو ذرات سلیکا
[07]	ناپيوسته — كربن دى اكسيد	- یرای حلالیت : قانون هنری - برای ضریب نفوذ: فرمول Wilke – Chang	– انتقال جرم: دانکورت – ایزوترم: لانگمویر	- میزان جذب، سرعت دوران، انتقال جرم، غلظت - مقایسه ذرات نانو و میکرو	فیزیکی	هگزادکان و روغن آفتابگردان- دی اکسید تیتانیم
[۴۰]	جذب کننده حبابی – آمونیاک (۱۸/۲- ۰٪ وزنی)	- شرایط پایدار است	- انتقال جرم: مدل تجربی	- میزان جذب، غلظت نانو ذرات	فیزیکی	آب – نانو مس، نانو اکسید مس و نانو اکسید آلومینیوم (۰/۰۰ ۰/۰۰ و ۰/۱ ٪ وزنی)
[۵۹]	ستون حبابی- کربن دی اکسید	– شرايط پايدار	-	- سرعت انتقال جرم، غلظت نانو ذرات	شیمیایی	آب، متیل دی اتانول آمین-
[۵۱]	ستون حبابی- کربن دی اکسید	– شرايط پايدار	- حجم گاز جذب شدہ	– مقدار جذب، انتقال جرم – غلظت بهينه نانو ذرات	شیمیایی	منو اتانول آمین- نانو ذرات اکسید آلومینا و سیلیس
[04]	راکتور همزن دار – کربن دی اکسید	-	- ضريب نفوذ: Nagy - ايزوترم: لانگموير	- مقایسه ذرات نانو و میکرو	فیزیکی	آب- نانو ذرات آلومينا و ميكرو ذرات آلومينا
[٣۴]	راکتور حبابی- کربن دی اکسید	-	-	– غلظت نانو ذرات، میزان جذب، میزان حلالیت ، توزیع نانو ذرات	شیمیایی	آب – نانو اکسید آلومینیوم و NaCl (۳/۵٪)
[۶٠]	-transient hot -wire system کربن دی اکسید	-	-	- پایداری محلول - ضریب نفوذ حرارت	شیمیایی	آب، متانول – كلرايد سديم – نانو اكسيد ألومينيوم
[۶١]	آکندہ دوار - کربن دی اکسید	-	-	- سرعت، دبی مایع و گاز، غلظت محلول	شیمیایی	آب- مونو اتانول آمین و دی اتانول آمین
[87]	برج آکندہ- کربن دی اکسید	- موازنه همزمان جرم و انرژی - واکنش سریع در فیلم مایع	– مدل پاندیا – رابطه گابریئلسن	– مقایسه نتایج با نتایج تونتیواچوتیکول[۲۷] و گابریٹلسن	شیمیایی	۲- آمینو ۲- متیل ۱- پروپانول
[۶٣]	برج جذب پر شده- هیدروژن سولفید	- استفاده از اصول پاندیا	- توسعه مدل پاندیا	- ثابت های سنتیکی درجه دوم - توزیع غلظت و ضریب انتخاب پذیری	شیمیایی	آب- متیل دی اتانول آمین
[٣٠]	برج آکندہ- کربن دی اکسید	– دبی مایع ورودی به برج ۰/۲ تا ۱/۳۲۱ لیتر بر دقیقه	- استفاده از مدل Billet و Schultes	- میزان انتقال جرم و ضریب انتقال جرم - میدان مغناطیسی	شیمیایی	آب- نانو اکسید مگنتیت و نانو اکسید نیکل

جذب	گوناگون	های ا	ر يستم	مختلف د	های	محلول	ا– تاثير	ل ۱	جدوا
-----	---------	-------	--------	---------	-----	-------	----------	-----	------

۴– انتقال جرم

۴-۱- انتقال جرم حجمی گاز - مایع در نانو سیالات

تحقیقات پژوهشگران نشان می دهد که، شناخت توزیع زمان اقامت فازها برای تعیین ضریب انتقال جرم حجمی (k_La) ضروری می باشد. به منظور توضیح افزایش انتقال جرم توسط ذرات ریز، سه مکانیزم به طور عمده مورد استفاده قرار می گیرد: اثر شاتل یا گریزینگ^{۱۲} ، اثر اختلاط مرز و اثر مهار انعقاد حباب. اثر شاتل بیان می کند که ذرات ریز می توانند وارد سطح انتقال جرم گاز- مایع شده و یک مقدار مشخصی از گاز را جذب کنند. و بعد از جذب مولکول های گاز در لایه مرزی و با توجه به تفاوت غلظت، ذرات حامل جذب شده به مایع برگشته و سپس گاز ها را در توده مایع دفع می کنند. به همین منظور ذرات بیشتر، گاز بیشتری را جذب نموده و به این ترتیب ذرات بیشتر، اثر بیشتری در جذب 2O₂ دارند. ولی چون سطح تماس گاز – مایع در آزمایشات و جذب محدود می باشد، نهایتاً ظرفیت جذب نیز محدود می شود. اگر غلظت ذرات بسیار بالا باشد، وجود ذرات ببیشتر در سطح تماس گاز – مایع می تواند مانع انتقال جرم مار عا بهبود جذب را کاهش دهند. اما تعدادی از محققین [۶۴] معتقدند که این مکانیسم نمی تواند کاهش ضریب انتقال جرم گاز – مایع با افزایش مقدار نانو ذرات را توضیح بدهد. اثر مخلوط کردن مرز معتقد است که ذرات در داخل لایه مرزی می تواند شایط هیدرودینامیکی را طوری تغییر دهند که منجر به افزایش انتقال جرم شده و به خوبی اثر ذرات بی اثر و ذرات بزرگ در افزایش انتقال جرم را توضیح دهد. اثر مهار انعقاد حباب بیان می کند که ذرات ریز می توانند سطح تماس گاز مایع می تواند شایط انتقال جرم گاز مایع با را طوری تغییر دهند که منجر به افزایش انتقال جرم شده و به خوبی اثر ذرات بی اثر و ذرات بزرگ در افزایش انتقال جرم را توضیح دهد. را طوری تغییر دهند که منجر به افزایش انتقال جرم شده و به خوبی اثر ذرات بی اثر و ذرات بزرگ در افزایش انتقال جرم را توضیح دهد. را ماوری تغییر دهند که منجر به افزایش انتقال جرم شده و به خوبی اثر ذرات بی اثر و در ای بزرگ در افزایش مانتقال جرم را توضیح دهد. را ماوری تغیر دمین می می منخر به افزایش انتقال جرم شده و بار فرو بی باز با برگیر در افزایش انتقال جرم را توضیح دهد. اثر مهار انتقاد حباب بیان می کند که ذرات ریز می تواند های قوق جامع و قابل قبول برای توضی اثر نانو ذرات بر انتقال جرم راز ماین تماس با تئوری کولموگوروف که از جرین ایزونتروپیک متلاطم حاصل شده بود، رابطه زیر را برای ضری بی نانو ذرات بر

$$k_L a\alpha \frac{u_G (u_G + C)^{15/20}}{2u_G + C} \tag{(7)}$$

در معادله بالا، C یک عدد ثابت است. چن و همکاران [۶۶] در سال ۲۰۰۸ رابطه زیر را برای محاسبه ضریب انتقال جرم ارائه نمودند.

$$k_{L}a = \frac{Q_{g}}{V_{I}} \ln \frac{C_{Ag1}}{C_{Ag2}}$$
(*)

همچنین برخی از محققین، روابطی را تحت شرایط خاص برای ضریب انتقال جرم ارائه نموده اند که تعدادی از آنها، در جدول ۲ خلاصه شده است.

منابع	رابطه پیشنهادی	محدوده پارامترها	سيستم
[۶۷]	$\frac{k_L a D_c^2}{D_i} = 0.6 \left(\frac{v_L}{D_i}\right)^{0.5} \left(\frac{g D_c^2 \rho_L}{\sigma}\right)^{0.62} \\ * \left(\frac{g D_c^3}{v_L^2}\right) \varepsilon_G^{1.1}$	$u_{G} (m/s): 0.003-0.4$ $U_{L} (m/s): 0.0-0.44$ $D_{c} (m): 0.152-0.6$ $H_{i} (m): 0.126-0.35$ $\rho_{L} (kg / m^{3}): 800-1600$ $\mu_{L} (pa.s): 0.00058-0.021$ $\sigma (N / m): 0.022-0.0742$	آب-هوا گلیکول-هوا متانول-هوا، محلول گلیکول-هوا، محلول متانول-هوا، آب-کربن دی آب-هلیم، آب-کربن دی اکسید
[۶٨]	$k_{L}a = 3.31 \frac{D_{i} \varepsilon_{G}}{d_{b}^{2}} (\frac{\mu_{L}}{\rho_{L} D_{i}})^{1/3}$	$* (rac{d_b ho_L u_G}{\mu_L arepsilon_G})^{1/2}$ معادله تئوری	گاز-مايع
[۶٩]	$\frac{k_L a D_C^2}{D_i} = 0.09 \left(\frac{v_{eff}}{D_i}\right)^{0.5} \left(\frac{g D_C^2 \rho_L}{\sigma}\right)^{0.75} \\ * \left(\frac{g D_C^3}{v_{eff}^2}\right)^{0.39} \left(\frac{u_G}{g D_C}\right) (1 + C \left(\frac{u_{b\infty} \lambda}{d_{\infty}}\right))^{m-1}$	$u_{G} (m/s) < 0.1$ $\mu_{L} (pa.s) : 0.0005 - 0.06$ $\rho_{L} (kg / m^{3}) : 995 - 1230$ C= 0 for unelastic liquids C= 0.133 for elastic liquids M= 0.55 $\lambda = \text{characteristic relaxation}$ time	آب-هوا محلول شکر-آب محلول سدیم پلی آکریلات-هوا
[٧٠]	$k_{L}a = \frac{14.9gf}{u_{G}} (\frac{u_{G}\mu_{L}}{\sigma_{L}})^{1.76} (\frac{\mu_{L}^{4}g}{\rho_{L}\sigma^{3}})^{-0.248}$ * $(\frac{\mu_{G}}{\mu_{L}})^{0.243} (\frac{\mu_{L}}{\rho_{L}D_{i}})^{-0.604}$ f=1.0 for nonelectrolytes $f = 10^{0.0681}I < 1.0\frac{Kgion}{m^{3}}$ $f = 1.114*10^{0.021}I > 1.0\frac{Kgion}{m^{3}}$	$u_{G} (m/s): 0.042-0.38$ $H_{i}(m): 0.13-0.22$ $D_{c}(m): 0.1-0.19$ $-$ $\rho_{L}(kg/m^{3}): 998-1230$ $-$ $\mu_{L}(pa.s): 0.0008-0.011$ $\sigma(N/m): 0.025-0.082$ $D_{i} (m^{2}/s): 4.6-26$	آب-هوا آب-اکسیژن آب-هیدروژن آب-دی اکسیدکربن هوا- محلول شکر هوا-بوتان نرمال هوا-محلول متانول هوا- محلول الکترولیت
[٧١]	$k_L a = 0.00315 u_G^{0.59} \mu_{eff}^{-0.54}$	u_{G} (m/s): 0.08 D_{c} (m): 0.14 H_{c} (m): 2.6	محلول آبی CMC (۱-۲ /)
[77]	$\frac{k_L a D_c^2}{D_i} = 0.6S c^{0.5} E o^{0.62} G a^{0.31} (\varepsilon_G)_p^M$ $n = 2.188 * 10^3 \text{ Re}^{-0.598} F r^{0.146} M_{oL}^{-0.004}$ $M = 0.3 \ln(n) + .004$	u _G (m/s): 0.45	نیتروژن–آب
[٧٣]	$\frac{k_{L}aD_{c}^{2}}{D_{i}} = 0.62(\frac{\mu_{l}}{\rho_{l}D_{i}})^{0.5}(\frac{g\rho_{l}D_{c}^{2}}{\sigma})^{0.33}$ $(\frac{g\rho_{l}^{2}D_{c}^{3}}{\mu_{l}^{2}})(\frac{v_{g}}{\sqrt{gD_{c}}})^{0.68}(\frac{\rho_{g}}{\rho_{l}})^{0.04}$ $Sh = 0.62Sc^{0.5}Bo^{0.33}Fr^{0.68}(\frac{\rho_{g}}{\rho_{l}})^{0.04}$	$D_{c}(m): 0.095$	مايع آلي- گاز (۵۰ نوع)

جدول ۲- تعدادی از روابط ضریب انتقال جرم حجمی توسط برخی از محققین

مطالعات انجام شده در زمینه استفاده از نانو سیالات در فرآیندهای انتقال چندان گسترده نمی باشد. به طوری که در برخی از مطالعات نتایج متناقضی به دست آمده است. به منظور افزایش انتقال جرم، ذرات ریز مطرح شده و از آنها در افزایش فرآیندهای انتقال جرم و کاهش حجم تجهیزات استفاده شده است. بهبود نرخ انتقال جرم با استفاده از ذرات ریز، برای اولین بار توسط کارز و همکارش [۷۴] مطرح

شد. آنها عنوان کردند که، نانو مواد در نانو سیال، می توانند باعث اثر گریزینگ شوند. با توجه به نتایج این محققین، با افزایش مقدار ذرات، اثر گریزینگ در جذب، ابتدا افزایش یافته و سپس ثابت می ماند. در سال ۲۰۰۳ زئو و همکارانش [۷۵] تأثیر ذرات ریز در نرخ انتقال جرم را بررسی نموده و بدین نتیجه رسیدند که ذرات ریز در محلول های آبی به دلایلی از قبیل تغییر ضخامت فیلم در اثر اختلاط و یا کاهش ضریب نفوذ گاز، موجب افزایش و یا کاهش ضریب انتقال جرم می شود. تحقیقات بعدی که توسط روتیا^{۱۴} و همکاران [۷۶] انجام شد، نشان داد که ذرات ریز می توانند نرخ انتقال جرم را افزایش داده و آن را توسط چهار مکانیزم مورد بررسی قرار دادند. پارک و چو [۷۷] در سال ۲۰۰۶ تأثیر نانو سیال سیلیکا با اندازه ذرات ۱۲ نانو متر را در جذب کربن دی اکسید مورد بررسی قرار دادند. نتایج تحقیقات آنها نشان داد که سرعت جذب با افزایش غلظت نانو ذره در محلول به علت خاصیت کشسانی ایجاد شده کاهش می یابد. صمدی و همکاران [۷۸] مطالعه ای را در مورد تاثیر نانو سیال آب/ Al₂O₃ در جذب CO₂ در ستون دیوار مرطوب انجام داده اند. با توجه به نتایج تحقیقات آنها، با افزایش غلظت نانو سیال و دبی مایع، ضریب انتقال جرم و میزان انقال جرم افزایش یافت. به طوری که با افزایش ۱٪ حجمی اکسید آلومینیوم، ضریب انتقال جرم بیش از ۵۵٪ افزایش را نشان داد. جیانگ و همکاران (۲۰۱۴) [۳۷] اثر نانو اکسیدهای تیتانیم، آلومینیوم، منیزیم و سیلسیوم در محلول های منواتانول آمین و متیل دی اتانول آمین را در راکتور حبابی برای جذب CO₂ مورد بررسی قرار داده اند. نتایج مطالعه آنها نشان داد که در بیشتر آزمایشات نانو ذرات باعث بهبود انتقال جرم شده و با افزایش مقدار نانو ذرات، در ابتدا میزان جذب افزایش و سپس کاهش می یابد. همچنین در محلول پایه منو اتانول آمین، تاثیر نانو ذرات با اندازه بزرگتر، بیشتر از نانو ذرات کوچکتر بود. سیف و همکاران [۷۹] اثر اندازه نانو ذرات و حرکت براونی نانو ذرات بر عملکرد سینک حرارتی در میکرو کانالها را مطالعه نمودند. سیرینی واس و همکاران [۵۹] اثر یک سیال مغناطیسی (حاوی نانو ذرات اکسید آهن با سیال پایه آب) را برای جذب گاز کربن دی اکسید در محلول آمین در یک ستون حبابی بررسی نمودند. اندازه ذرات هنگامی که این سیال مغناطیسی به محلول آمین در سیستم جذب گاز کربن دی اکسید اضافه می شود به عنوان تابعی از غلظت و زمان مورد مطالعه قرار گرفت. آنها چنین دریافتند که این سیال مغناطیسی سرعت انتقال جرم را تا حدود ۴۳٪ در فرآیند جذب کربن دی اکسید توسط محلول متیل دی اتانول آمین افزایش می دهد. همچنین، کوماتی و سورش 16 [۸۰] اثر نانو ذرات مغناطیسی Fe_3O_4 در جذب CO_2 در یک ستون دیواره مرطوب را مورد بررسی قرار دادند. آنها مشاهده کردند که میزان جذب با افزایش غلظت نانوذرات، افزایش می یابد. به طوری که حداکثر افزایش ضریب انتقال جرم ۹۲/۸٪ است که در ۳۹/۰کسر حجمی رخ می دهد. آنها دریافتند که میدان مغناطیسی اثر کمی بر روی میزان جذب گاز دارد. کشیشیان و همکاران [۸۱] با استفاده از روش الکتروشیمیایی جریان محدود، اثر نانو ذرات سیلیکا در انتقال جرم در یک لوله مدور را مورد مطالعه قرار دادند، و کسر حجمی بهینه نانو ذرات برای افزایش انتقال جرم را به دست آوردند. با توجه به شکل ۳، مشخص است که یک نقطه بهینه وجود دارد که در آنجا ضریب انتقال جرم ماکزیمم است. به طوری که، با افزایش غلظت نانو ذرات تا نقطه بهینه، ضریب انتقال جرم افزایش می یابد. ولى بعد از اين نقطه با افزايش غلظت، ضريب انتقال جرم كاهش يافته و حتى ممكن است به مقادير كمتر از محلول خالص نيز برسد. کاهش انتقال جرم با افزایش غلظت، ممکن است به علت ته نشینی نانو ذرات و ناپایداری نانو سیال باشد، که باعث تغییر ساختار نانو سیال می شود. گراردی و همکاران [۸۲]، در تحقیقی مشابه، نانو ذرات آلومینا در آب را مورد بررسی قرار دادند. نتایج بررسی آنها نشان داد که، با افزایش درصد حجمی نانو ذرات، ضریب نفوذ کاهش می یابد. آنها برخی از دلایل خود را اینگونه عنوان کردند که: در سیستم های کلوئیدی مانند نانو سیالات، نیروهایی با برد کوتاه^۲ وجود دارد که می تواند لایه ناز کی از مولکول های سیال پایه در اطراف نانو ذرات ایجاد کند. سپس این مولکول های سیال پایه به سطح چسبیده، با نانو ذرات حرکت می کنند. از آنجائیکه ضریب نفوذ این ذرات از ضریب نفوذ ذرات آزاد كمتر است، بنابراين با افزايش غلظت نانو ذرات، انتقال جرم كاهش مي يابد. همچنين، با افزايش غلظت نانو ذرات، تعداد نانو ذرات جامدي كه در سر راه مولكول هاي آب قرار دارند، افزايش يافته و منجر به افزايش انحنا در مسير مولكول هاي آب مي شوند. سرعت ظاهری گاز یکی دیگر از عوامل اصلی تاثیرگذار در انتقال جرم می باشد. شکل ۴، ضریب انتقال جرم در آب و غلظت بهینه نانوسیال با سرعت ظاهري متفاوت گاز CO₂ را نشان مي دهد. ضريب انتقال جرم تقريباً با سرعت ظاهري گاز به صورت خطي افزايش مي يابد. سرعت ظاهری گاز به دلیل ناپایداری متفاوت نانو سیالات، اثر گریزینگ را تحت تاثیر قرار می دهد. بنابراین، افزایش سرعت ظاهری گاز به طور قابل ملاحظه ای اثر گریزینگ را بهبود می دهد [۸۳].

شکل ۳- تاثیر مقدار نانو ذرات در ضریب انتقال جرم

شکل ۴- ضریب انتقال جرم در سرعت های ظاهری متفاوت گاز [۸۴]

-۲-۴ ضریب انتقال جرم مایع \mathbf{k}_L در نانو سیالات

برای فرآیندهای انتقال جرم همراه با واکنش شیمیایی آهسته، دانش K_La کافی است. ولی برای محاسبه بهبود فاکتورها در واکنش شیمیایی سریع و آنی در فیلم مایع، نیاز به دانستن k_L می باشد. با توجه به ابهامات در تعیین مساحت فصل مشترک (بین سطحی)، تخمین k_L از روی دانش k_La و اندازه گیری مقادیر a خطای زیادی ایجاد می کند. داده های k_L را می توان از اندازه گیری تک حباب تعیین نمود. تحقیقات کرامبیگل و همکاران [۸۵] نشان داد که اگر 0.06 m/s (که مربوط به انتقال جرم با حلالیت کم می شود) باشد، می توان نتایج حباب های تنها را برای مجموعه ای از حبابها استفاده نمود. اگر گازها حلالیت بالا داشته باشند، نرخ انتقال جرم بالا رخ داده و شرایط پیچیده خواهد بود. تعدادی از روابط معروف برای k_L یا عدد شروود در جدول زیر آورده شده است.

$$K_{L} = \frac{K_{La}}{a} \tag{(7)}$$

منابع	رابطه	دامنه پارامتر ها	سيستم
[\6	$k_{L} = 0.0042 \left(\frac{(\rho_{L} - \rho_{G})\mu_{L}g}{\rho_{L}^{2}}\right)^{1/3}$ $* \left(\frac{\mu_{L}}{\rho_{L}D_{i}}\right)^{-1/2}$	$\rho_{L}(kg / m^{3}):1000 - 1178$ $\mu_{L}(pa - s):0.0006 - 0.0697$ $\rho_{L} - \rho_{G}(kg / m^{3}):1000 - 1178$ $d_{p} \rangle 2.5mm$	برای حباب های بزرگ محلول آبی گلیکول- کربن دی اکسید، آب- کربن دی اکسید، آب اکسیژن، آب نمک- اکسیژن، محلول پلی اکریل آمید کربن دی اکسید
	$k_{L} = 0.0031 \left(\frac{(\rho_{L} - \rho_{G})\mu_{L}g}{\rho_{L}^{2}}\right)^{1/3}$ $* \left(\frac{\mu_{L}}{\rho_{L}D_{i}}\right)^{-1/3}$	$\rho_L (kg / m^3): 698 - 1160$ $\mu_L (pa - s): 0.00084 - 0.001$ $\rho_L - \rho_G (kg / m^3): 174 - 1160$ $d_p \langle 2.5mm$	برای حباب های کوچک محلول آبی گلیکول کربن دی اکسید، آب نمک- کربن دی اکسید، واکس-هیدروژن، محلول آبی اتانل-هگزان
[٨٧]	$\frac{k_{L}d_{p}}{D_{i}} = 2 + 0.0187[Sc^{0.339} \text{ Re}^{0.484}$ $*(\frac{d_{vs}g^{1/3}}{D_{i}^{2/3}})^{0.072}]^{1.61}$ $Sc = \frac{\mu_{L}}{\rho_{L}D_{i}}$ $\text{Re} = \frac{d_{vs}u_{G}\rho_{L}}{\mu_{L}}$	$D_{c}(m): 0.025 - 1.1$ $\rho_{L}(kg / m^{3}): 776 - 1696$ $\sigma(N / m): 0.025 - 0.076$ $\mu_{L}(pa - s): 0.0009 - 0.152$	هوا-آب، هوا-محلول کربنات سدیم، هوا-حلال نفتی، هوا-گلیسیرین، هوا- محلول کلراید روی
[\\	$k_{L} = 0.5 \frac{D_{i}}{d_{vs}} (\frac{v_{L}}{D_{i}})^{1/2} (\frac{gd_{vs}^{3}}{v_{L}^{2}})^{1/4}$ $* (\frac{gd_{vs}^{2} \rho_{L}}{\sigma})^{3/8}$	$\begin{split} & u_{G}(m \ / \ s) : 0.006 - 0.4 \\ & u_{L}(m \ / \ s) : 0.0 - 0.44 \\ & D_{C}(m) : 0.152 - 0.6 \\ & H_{i}(m) : 0.126 - 0.35 \\ & \rho_{L}(kg \ / m^{3}) : 500 - 1600 \\ & \sigma_{L}(N \ / \ m) : 0.022 - 0.0742 \\ & \mu_{L}(pa - s) : 0.00056 - 0.021 \end{split}$	آب-هوا، گلیکول-هوا، متانول-هوا، محلول آبی گلیکول-هوا، محلول آبی متانل-هوا، آب-اکسیژن، آب-هلیم، آب-کربن دی اکسید
[٨٩]	$k_{L} = \frac{0.15D_{i}}{d_{vs}} \left(\frac{v_{L}}{D_{i}}\right)^{1/2} \left(\frac{d_{vs}u_{G}\rho_{L}}{\mu_{L}}\right)^{3/4}$	$u_{G} (m / s) \langle 0.08$ $\rho_{L} (kg / m^{3}) : 996 - 1005$ $\sigma_{L} (N / m) : 0.053 - 0.073$ $\mu_{L} (pa - s) : 0.00089 - 0.001$	محلول آبی الکل-هوا، الکترولیت-هوا
[٩٠]	$k_L = \frac{D_C}{D_i} (2 + 0.6 \mathrm{Re}^{1/2} Sc^{1/3})$	$D_{c}(mm) < 1.5$	نانو محلول کربنات کلسیم- کربن دی اکسید

جدول ۳- تعدادی از روابط ضریب انتقال جرم مایع توسط برخی از محققین

نتيجه گيرى

در دهه گذشته بسیاری از خصوصیات جالب نانو سیالات مورد بررسی قرار گرفته است. در این تحقیق یک مروری کلی بر مطالعات اخیر در زمینه نانوسیال، شامل اثر سرعت ظاهری و غلظت نانو ذرات در بهبود میزان جذب و انتقال جرم انجام گردید. همچنین، جذب گاز CO توسط نانو ذرات اکسید فلزی در ستون حبابی با استفاده از انواع سیالات پایه مانند آب، متانول، مونو اتانول آمین و متیل دی اتانول آمین بررسی شده است. برخی از مطالعات گزارش کرده اند که استفاده از نانو مواد به دلیل عملکرد نانو ذرات در مرزها، باعث افزایش ضریب انتقال جرم در فاز مایع شده و در نتیجه باعث بهبود نرخ انتقال جرم در طول فرآیند جذب می شوند. در حالی که برخی از گزارش ها انتقال جرم در فاز مایع شده و در نتیجه باعث بهبود نرخ انتقال جرم در طول فرآیند جذب می شوند. در حالی که برخی از گزارش ها انجام شده در زمینه نانو سیالات چندان گسترده نمی باشد و مکانیسم عملکرد نانوذرات در افزایش ضریب انتقال جرم و بهبود راندمان جذب همچنان تا حدودی مبهم است. اما حرکات براونی نانوذرات، اثر گریزینگ و افزایش زمان ماند فراز در نانوسیال، نسبت به سیال پایه و بهبود انتقال حرارت از جمله عواملی است که این بهبود را توجیه می کند. نتایج آزمایش های انجام شده توسط محققین بیانگر این می باند. ولی با افزایش نانو ذرات به سیال پایه تا غلظت بهینه، به دلیل اختلاط مرزها، میزان جذب گاز نسبت به سیال می یابد. ولی با افزایش نانو ذرات تا غلظت هاین بهبود را توجیه می کند. نتایج آزمایش های انجام شده توسط محققین بیانگر این می یابد. ولی با افزایش نانو ذرات تا غلظت هاین از غلظت بهینه، به دلیل اختلاط مرزها، میزان جذب گاز نسبت به سیال پایه افزایش می یابد. ولی با افزایش بیشتر نانو ذرات تا غلظت های بیش از غلظت بهینه، به دلیل کاهش سطح تماس گاز مایع و رسوب نانو ذرات، نرخ می یابد. ولی با افزایش بیشتر نانو ذرات تا غلظت های بیش از غلظت بهینه، به دلیل کاهش سطح تماس گاز مایع و رسوب نانو ذرات، نرخ می یابد. ولی با افزایش می می یابد. تحقیقات نشان داده که در شرایط یکسان، نقش محلول پایه در نانو سیال با پایه مونواتانول آمین می مهم است. به طوری که در یک شرایط مشابه، میزان جذب نانو سیال با پایه دی اتانول آمین بیشتر از نانو سیال با پایه مونواتانول آمین می باشد. این نتیجه نشان می دهد که واکنش شیمیای یک عامل مهم بوده و اثر فاکتور بهبود با افزایش نرخ واکنش ش شود. همچنین، تاثیر انواع نانو ذرات در محلول پایه، در نرخ جذب متفاوت بوده و ترتیب برخی از آنها در محلول پایه دی متیل اتانول آمین به صورت: $TiO_2 > MgO > Al_2O_3 > SiO_2$ به صورت: $SiO_2 > SiO_2 > SiO_2 > SiO_2$

منابع و مراجع

- 1. Pashaei, H., M.N. Zarandi, and A. Ghaemi, Experimental study and modeling of CO 2 absorption into diethanolamine solutions using stirrer bubble column. Chem. Eng. Res. Des., 2017. 121: p. 32-43.
- 2. Ghaemi, A. and A.H. Behroozi, Comparison of hydroxide-based adsorbents of Mg (OH) 2 and Ca (OH) 2 for CO2 capture: utilization of response surface methodology, kinetic, and isotherm modeling. Greenhouse Gases: Science and Technology, 2020. 10(5): p. 948-964.
- 3. Khajeh, M. and A. Ghaemi, Exploiting response surface methodology for experimental modeling and optimization of CO2 adsorption onto NaOH-modified nanoclay montmorillonite. Journal of Environmental Chemical Engineering, 2020. 8(2): p. 103663.
- Etemad, E., A. Ghaemi, and M. Shirvani, Rigorous correlation for CO2 mass transfer flux in reactive absorption processes. International Journal of Greenhouse Gas Control, 2015. 42: p. 288-295.
- 5. Fashi, F., A. Ghaemi, and P. Moradi, Piperazine-modified activated alumina as a novel promising candidate for CO2 capture: experimental and modeling. Greenhouse Gases: Science and Technology, 2019. 9(1): p. 37-51.
- 6. Taheri, F.S., et al., High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite. Energy & Fuels, 2019. 33(6): p. 5384-5397.
- 7. Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm. Journal of Natural Gas Science and Engineering, 2015. 24: p. 18-25.
- 8. Pashaei, H., A. Ghaemi, and M. Nasiri, Modeling and experimental study on the solubility and mass transfer of CO 2 into aqueous DEA solution using a stirrer bubble column. RSC Adv., 2016. 6(109): p. 108075-108092.
- 9. Ghaemi, A., S. Shahhosseini, and M.G. Maragheh, Nonequilibrium modeling of reactive absorption processes. Chemical Engineering Communications, 2009. 196(9): p. 1076-1089.
- 10. Ghaemi, A., et al., Kinetics and absorption rate of CO2 into partially carbonated ammonia solutions. Chemical Engineering Communications, 2011. 198(10): p. 1169-1181.
- Ghaemi, A., S. Shahhosseini, and M. Ghannadi Maragheh, Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2011. 30(2): p. 43-50.
- Niknafs, H., A. Ghaemi, and S. Shahhosseini, Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process. Heat and Mass Transfer, 2015. 51(8): p. 1131-1140.
- 13. Ghaemi, A. and A. Hemmati, Mass transfer coefficient for PZ+ CO 2+ H 2 O system in a packed column. Heat and Mass Transfer, 2020: p. 1-15.
- 14. Ghaemi, A., M. Torab-Mostaedi, and M.G. Maragheh, Nonequilibrium dynamic modeling of simultaneous reactive absorption of gases. Journal of the Taiwan Institute of Chemical Engineers, 2011. 42(1): p. 173-179.
- 15. Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, Chemical absorption of CO 2 into an aqueous piperazine (PZ) solution: development and validation of a rigorous dynamic rate-based model. RSC Adv., 2016. 6(46): p. 40017-40032.
- 16. Amiri, M., S. Shahhosseini, and A. Ghaemi, Optimization of CO2 capture process from simulated flue gas by dry regenerable alkali metal carbonate based adsorbent using response surface methodology. Energy Fuels, 2017. 31(5): p. 5286-5296.
- 17. Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, CO2 chemical absorption into aqueous solutions of piperazine: modeling of kinetics and mass transfer rate. Journal of Natural Gas Science and Engineering, 2015. 26: p. 1059-1067.
- Ghaemi, A., S. Shahhosseini, and M.G. Maragheh, Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chemical Engineering Journal, 2009. 149(1-3): p. 110-117.
- 19. Ha, J., Characteristics of Heat and Mass transfer properties by using silica nanoparticles in ammonia-water system. 2002, MA thesis, Korea university, Korea.

- 20. Naeem, S., A. Ghaemi, and S. Shahhosseini, Experimental investigation of CO 2 capture using sodium hydroxide particles in a fluidized bed. Korean Journal of Chemical Engineering, 2016. 33(4): p. 1278-1285.
- 21. Naeem, S., S. Shahhosseini, and A. Ghaemi, Simulation of CO2 capture using sodium hydroxide solid sorbent in a fluidized bed reactor by a multi-layer perceptron neural network. Journal of Natural Gas Science and Engineering, 2016. 31: p. 305-312.
- 22. Mirzaei, F. and A. Ghaemi, Mass Transfer Modeling of CO2 Absorption into Blended Aqueous MDEA–PZ Solution. Iranian Journal of Oil and Gas Science and Technology, 2020. 9(3): p. 77-101.
- Ghaemi, A., A.H. Behroozi, and H. Mashhadimoslem, Mass Transfer Flux of CO2 into Methyldiethanolamine Solution in a Reactive-Absorption Process. Chemical Engineering & Technology, 2020. 43(10): p. 2083-2091.
- 24. Pashaei, H., et al., Experimental investigation of the effect of nano heavy metal oxide particles in Piperazine solution on CO2 absorption using a stirrer bubble column. Energy Fuels, 2018. 32(2): p. 2037-2052.
- 25. Keblinski, P., et al., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International journal of heat and mass transfer, 2002. 45(4): p. 855-863.
- 26. Kang, Y.T., H.J. Kim, and K.I. Lee, Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. International journal of refrigeration, 2008. 31(5): p. 850-856.
- 27. Pineda, I.T., et al., CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. International journal of refrigeration, 2012. 35(5): p. 1402-1409.
- Niu, X.F., K. Du, and F. Xiao, Experimental study on ammonia-water falling film absorption in external magnetic fields. International journal of refrigeration, 2010. 33(4): p. 686-694.
- 29. Wu, W.-D., et al., Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field. Energy and buildings, 2013. 57: p. 268-277.
- 30. Salimi, J., M. Haghshenasfard, and S.G. Etemad, CO 2 absorption in nanofluids in a randomly packed column equipped with magnetic field. Heat and mass transfer, 2015. 51(5): p. 621-629.
- 31. Haghtalab, A., M. Mohammadi, and Z. Fakhroueian, Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid phase equilibria, 2015. 392: p. 33-42.
- Lee, J.K., et al., The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. International journal of refrigeration, 2010. 33(2): p. 269-275.
- Amaris, C., M. Bourouis, and M. Vallès, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber. Energy, 2014. 68: p. 519-528.
- 34. Lee, J.W. and Y.T. Kang, CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy, 2013. 53: p. 206-211.
- 35. Jung, J.-Y., J.W. Lee, and Y.T. Kang, CO 2 absorption characteristics of nanoparticle suspensions in methanol. Journal of mechanical science and technology, 2012. 26(8): p. 2285-2290.
- 36. Pashaei, H. and A. Ghaemi, CO2 absorption into aqueous diethanolamine solution with nano heavy metal oxide particles using stirrer bubble column: Hydrodynamics and mass transfer. Journal of Environmental Chemical Engineering, 2020: p. 104110.
- Jiang, J., et al., Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles. International Journal of greenhouse gas control, 2014. 29: p. 135-141.
- Heydarifard, M., et al., Reactive absorption of CO2 into Piperazine aqueous solution in a stirrer bubble column: Modeling and experimental. Int. J. Greenhouse Gas Control, 2018. 79: p. 91-116.
- 39. Pashaei, H., A. Ghaemi, and M. Nasiri, Experimental investigation of CO2 removal using Piperazine solution in a stirrer bubble column. Int. J. Greenhouse Gas Control, 2017. 63: p. 226-240.

- 40. Kim, J.-K., J.Y. Jung, and Y.T. Kang, The effect of nano-particles on the bubble absorption performance in a binary nanofluid. International journal of refrigeration, 2006. 29(1): p. 22-29.
- 41. Lee, J.W., et al., CO2 bubble absorption enhancement in methanol-based nanofluids. International journal of refrigeration, 2011. 34(8): p. 1727-1733.
- 42. Pang, C., et al., Mass transfer enhancement by binary nanofluids (NH3/H2O+ Ag nanoparticles) for bubble absorption process. International journal of refrigeration, 2012. 35(8): p. 2240-2247.
- 43. Kim, W.-g., et al., Synthesis of silica nanofluid and application to CO2 absorption. Separation Science and Technology, 2008. 43(11-12): p. 3036-3055.
- 44. Fakhroueian, Z., et al., Influence of modified ZnO quantum dots and nanostructures as new antibacterials. Advances in nanoparticles, 2013. 2(03): p. 247.
- 45. Lam, S.-M., et al., Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV-vis photocatalytic activities. Separation and Purification Technology, 2014. 132: p. 378-387.
- 46. Djurišić, A.B. and Y.H. Leung, Optical properties of ZnO nanostructures. small, 2006. 2(8-9): p. 944-961.
- 47. Kurtz, M., et al., Active Sites on Oxide Surfaces: ZnO-Catalyzed Synthesis of Methanol from CO and H2. Angewandte Chemie International Edition, 2005. 44(18): p. 2790-2794.
- 48. Xia, X., et al., Probing the surface heterogeneity of polycrystalline zinc oxide by static adsorption microcalorimetry. 1. The influence of the thermal pretreatment on the adsorption of carbon dioxide. The Journal of Physical Chemistry C, 2008. 112(29): p. 10938-10942.
- 49. Wöll, C., Structure and Chemical Properties of Oxide Nanoparticles Determined by Surface-Ligand IR Spectroscopy. ACS Catalysis, 2019. 10(1): p. 168-176.
- 50. Noei, H., et al., Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy. The Journal of Physical Chemistry C, 2011. 115(4): p. 908-914.
- 51. Jiang, J., et al., Chemical absorption kinetics in MEA solution with nano-particles. Energy Procedia, 2013. 37: p. 518-524.
- 52. Sumin, L., et al., Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles. Chinese Journal of Chemical Engineering, 2013. 21(9): p. 983-990.
- 53. Pashaei, H., et al., Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology. ACS omega, 2020. 5(15): p. 8432-8448.
- 54. Critchfield, J., CO2 absorption/desorption in methyldiethanolamine solutions promoted with MEA and D2EA. Mass transfer and reaction kinetics. University of Texas, Austin, TX, USA, 1988.
- Bosch, H., G. Versteeg, and W. Van Swaaij, Desorption of acid gases (CO2 and H2S) from loaded alkanolamine solutions. 1990, Elsevier Science Publishers BV: Amsterdam. p. 505-512.
- 56. Xu, G.-W., et al., Desorption of CO2 from MDEA and activated MDEA solutions. Industrial & engineering chemistry research, 1995. 34(3): p. 874-880.
- 57. Cadours, R., et al., Kinetics of CO2 desorption from highly concentrated and CO2-loaded methyldiethanolamine aqueous solutions in the range 312–383 K. Industrial & engineering chemistry research, 1997. 36(12): p. 5384-5391.
- 58. Mondal, T.K., Phase Equilibrium Modeling in Gas Purification System. 2009.
- 59. Srinivas, K., M. Rajagopal, and A. Suresh, Synthesis, characterization and testing for ferrofluids for mass transfer intensification. Int J Chem Sci, 2007. 5: p. 1913-1928.
- 60. Pang, C. and Y.T. Kang, Stability and thermal conductivity characteristics of nanofluids (H2O/CH3OH+ NaCl+ Al2O3 nanoparticles) for CO2 absorption application. 2012.
- Rahimi, M. and M. Soleiman, Experimental Study of Carbon Dioxide Absorption from Air Stream in Rotating Packed Bed. Journal of separafion science and engineering, 2013. 5: p. 1-16.
- 62. Khan, A.A., G. Halder, and A. Saha, Carbon dioxide capture characteristics from flue gas using aqueous 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) solutions in packed bed absorption and regeneration columns. International Journal of Greenhouse Gas Control, 2015. 32: p. 15-23.

- 63. Zhang, P., et al., Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption. Journal of Environmental Sciences, 2008. 20(1): p. 39-44.
- 64. Vinke, H., P. Hamersma, and J. Fortuin, Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles. Chemical Engineering Science, 1993. 48(12): p. 2197-2210.
- 65. Kaštánek, F., The volume mass transfer coefficient in a bubble bed column. Collection of Czechoslovak Chemical Communications, 1977. 42(8): p. 2491-2497.
- 66. Chen, P.-C., et al., Scrubbing of CO2 greenhouse gases, accompanied by precipitation in a continuous bubble-column scrubber. Industrial & engineering chemistry research, 2008. 47(16): p. 6336-6343.
- 67. Akita, K. and F. Yoshida, Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Industrial & Engineering Chemistry Process Design and Development, 1973. 12(1): p. 76-80.
- 68. Fair, J., Designing gas-sparged reactors. Chem. Eng, 1967. 74(14): p. 67-74.
- Nakanoh, M. and F. Yoshida, Gas absorption by Newtonian and non-Newtonian liquids in a bubble column. Industrial & Engineering Chemistry Process Design and Development, 1980. 19(1): p. 190-195.
- 70. Hikita, H., et al., The volumetric liquid-phase mass transfer coefficient in bubble columns. The chemical engineering journal, 1981. 22(1): p. 61-69.
- Deckwer, W.D., et al., Fischer-Tropsch synthesis in the slurry phase on manganese/iron catalysts. Industrial & Engineering Chemistry Process Design and Development, 1982. 21(2): p. 222-231.
- 72. Luo, X., et al., Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE journal, 1999. 45(4): p. 665-680.
- 73. Öztürk, S., A. Schumpe, and W.D. Deckwer, Organic liquids in a bubble column: holdups and mass transfer coefficients. AIChE journal, 1987. 33(9): p. 1473-1480.
- 74. Kars, R., R. Best, and A. Drinkenburg, The sorption of propane in slurries of active carbon in water. The Chemical Engineering Journal, 1979. 17(2): p. 201-210.
- 75. Zhou, M., W.F. Cai, and C.J. Xu, A new way of enhancing transport process–The hybrid process accompanied by ultrafine particles. Korean Journal of Chemical Engineering, 2003. 20(2): p. 347-353.
- 76. Ruthiya, K., et al., Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor. Chemical Engineering Journal, 2003. 96(1-3): p. 55-69.
- Park, S.-W., et al., Absorption of carbon dioxide into aqueous colloidal silica solution with diisopropanolamine. Journal of Industrial and Engineering Chemistry, 2008. 14(2): p. 166-174.
- Samadi, Z., M. Haghshenasfard, and A. Moheb, CO2 absorption using nanofluids in a wetted-wall column with external magnetic field. Chemical Engineering & Technology, 2014. 37(3): p. 462-470.
- 79. Seyf, H.R. and B. Nikaaein, Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks. International Journal of Thermal Sciences, 2012. 58: p. 36-44.
- Komati, S. and A.K. Suresh, CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008. 83(8): p. 1094-1100.
- 81. Keshishian, N., M.N. Esfahany, and N. Etesami, Experimental investigation of mass transfer of active ions in silica nanofluids. International communications in heat and mass transfer, 2013. 46: p. 148-153.
- 82. Gerardi, C., et al., Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Applied Physics Letters, 2009. 95(25): p. 253104.
- Wang, T., et al., Enhanced CO2 absorption and desorption by monoethanolamine (MEA)based nanoparticle suspensions. Industrial & Engineering Chemistry Research, 2016. 55(28): p. 7830-7838.
- 84. Saeednia, L., H. Hashemipour, and D. Afzali, Study on mass transfer enhancement in a gasliquid system using nanomaterials. 2015.

- 85. Krumbiegel, G., et al., Studies on the metabolism of aristolochic acids I and II. Xenobiotica, 1987. 17(8): p. 981-991.
- 86. Calderbank, P. and M. Moo-Young, The continuous phase heat and mass-transfer properties of dispersions. chemical Engineering science, 1961. 16(1-2): p. 39-54.
- 87. Hughmark, G., Holdup and mass transfer in bubble columns. Industrial & Engineering Chemistry Process Design and Development, 1967. 6(2): p. 218-220.
- 88. Akita, K. and F. Yoshida, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Industrial & Engineering Chemistry Process Design and Development, 1974. 13(1): p. 84-91.
- 89. Schügerl, K., et al., Application of tower bioreactors in cell mass production, in Advances in Biochemical Engineering, Volume 8. 1978, Springer. p. 63-131.
- 90. Du, L., et al., Effects of nanoparticles with different wetting abilities on the gas-liquid mass transfer. Chemical Engineering Science, 2014. 114: p. 105-113.